Some Optimal Convex Combination Bounds for Arithmetic Mean

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal One–parameter Mean Bounds for the Convex Combination of Arithmetic and Logarithmic Means

We find the greatest value p1 = p1(α) and the least value p2 = p2(α) such that the double inequality Jp1 (a,b) <αA(a,b)+(1−α)L(a,b) < Jp2 (a,b) holds for any α ∈ (0,1) and all a,b > 0 with a = b . Here, A(a,b) , L(a,b) and Jp(a,b) denote the arithmetic, logarithmic and p -th one-parameter means of two positive numbers a and b , respectively. Mathematics subject classification (2010): 26E60.

متن کامل

Optimal Convex Combination Bounds of Seiffert and Geometric Means for the Arithmetic Mean

We find the greatest value α and the least value β such that the double inequality αT (a,b) + (1−α)G(a,b) < A(a,b) < βT (a,b) + (1− β)G(a,b) holds for all a,b > 0 with a = b . Here T (a,b) , G(a,b) , and A(a,b) denote the Seiffert, geometric, and arithmetic means of two positive numbers a and b , respectively. Mathematics subject classification (2010): 26E60.

متن کامل

The Optimal Upper and Lower Power Mean Bounds for a Convex Combination of the Arithmetic and Logarithmic Means

and Applied Analysis 3 Lemma 2.1. If α ∈ 0, 1 , then 1 2α log 2 − logα > 3 log 2. Proof. For α ∈ 0, 1 , let f α 1 2α log 2 − logα , then simple computations lead to f ′ α 2 ( log 2 − 1 − 2 logα − 1 α , 2.1 f ′′ α 1 α2 1 − 2α . 2.2 From 2.2 we clearly see that f ′′ α > 0 for α ∈ 0, 1/2 , and f ′′ α < 0 for α ∈ 1/2, 1 . Then from 2.1 we get f ′ α ≤ f ′ ( 1 2 ) 4 ( log 2 − 1 < 0 2.3 for α ∈ 0, 1 ....

متن کامل

The Optimal Convex Combination Bounds of Harmonic Arithmetic and Contraharmonic Means for the Neuman means

In the paper, we find the greatest values α1, α2, α3, α4 and the least values β1, β2, β3, β4 such that the double inequalities α1A(a, b) + (1− α1)H(a, b) < N ( A(a, b), G(a, b) ) < β1A(a, b) + (1− β1)H(a, b), α2A(a, b) + (1− α2)H(a, b) < N ( G(a, b), A(a, b) ) < β2A(a, b) + (1− β2)H(a, b), α3C(a, b) + (1− α3)A(a, b) < N ( Q(a, b), A(a, b) ) < β3C(a, b) + (1− β3)A(a, b), α4C(a, b) + (1− α4)A(a, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Kyungpook mathematical journal

سال: 2014

ISSN: 1225-6951

DOI: 10.5666/kmj.2014.54.4.521